Review: Taylor Polynomials - 11/9/16

1 Theory

Goal: Find a degree n polynomial that approximates a function $f(x)$ at a point a.
Definition 1.0.1 n factorial is $n!=n \cdot(n-1) \cdots 2 \cdot 1$.
Example 1.0.2 $3!=3 \cdot 2 \cdot 1=6,5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$.
Definition 1.0.3 The nth order Taylor polynomial of f at a is

$$
T_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

Notice that first order Taylor polynomials are just the linear approximations.

2 Examples

Example 2.0.4 Find T_{4} of $f(x)=\ln (x)$ at $x=1$. How many derivatives do we need? Four, since we're trying to find T_{4}.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x} \\
f^{\prime \prime}(x) & =-\frac{1}{x^{2}} \\
f^{\prime \prime \prime}(x) & =\frac{2}{x^{3}} \\
f^{(4)}(x) & =-\frac{6}{x^{4}}
\end{aligned}
$$

Then following what we found above,

$$
T_{4}(x)=0+\frac{1}{1}(x-1)-\frac{1}{2!}(x-1)^{2}+\frac{2}{3!}(x-1)^{3}-\frac{6}{4!}(x-1)^{4} .
$$

Example 2.0.5 Find T_{3} of $f(x)=e^{x}$ at $x=0$. How many derivatives do we need? Three, since we're trying to find T_{3}. Luckily, the derivatives are all e^{x}, so $f^{(n)}(0)=e^{0}=1$. Then

$$
T_{3}(x)=1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3} .
$$

Example 2.0.6 Find T_{n} of $f(x)=e^{x}$ at $x=0$. Then

$$
T_{n}(x)=1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\cdots+\frac{1}{n!} x^{n}
$$

Example 2.0.7 Find T_{5} of $f(x)=\cos (x)$ at $x=\frac{\pi}{2}$. How many derivatives do we need? Five, since we're trying to find T_{5}.

$$
\begin{aligned}
f^{\prime}(x) & =-\sin (x) \\
f^{\prime \prime}(x) & =-\cos (x) \\
f^{\prime \prime \prime}(x) & =\sin (x) \\
f^{(4)}(x) & =\cos (x) \\
f^{(5)}(x) & =-\sin (x)
\end{aligned}
$$

Since $\cos \left(\frac{\pi}{2}\right)=0$ and $\sin \left(\frac{\pi}{2}\right)=1$, then we have

$$
T_{5}(x)=-\frac{1}{1!}\left(x-\frac{\pi}{2}\right)+\frac{1}{3!}\left(x-\frac{\pi}{2}\right)^{3}-\frac{1}{5!}\left(x-\frac{\pi}{2}\right)^{5}
$$

Example 2.0.8 Find T_{5} of $f(x)=\cos (x)$ at $x=0$. We still use the same derivatives, but now $\cos (0)=1$ and $\sin (0)=0$. Then

$$
T_{5}(x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}
$$

Example 2.0.9 Find T_{3} of $f(x)=5 x^{3}+7 x-5$ at $x=0$. We need to find three derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =15 x^{2}+7 \\
f^{\prime \prime}(x) & =30 x \\
f^{\prime \prime \prime}(x) & =30
\end{aligned}
$$

Then

$$
T_{3}(x)=-5+\frac{7}{1!} x+\frac{0}{2!} x^{2}+\frac{30}{3!} x^{3}=-5+7 x+5 x^{3}
$$

This is the same as our original polynomial! This is what we hoped would happen, since the Taylor polynomial is supposed to be a polynomial approximation of $f(x)$.

Practice Problems Look at the practice problems that we did in class. The problems and solutions are posted on the website.

